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implies an unbalance of only 0.027 dB between the reference and
delayed arms of the interferometer, indicating that some type of
limiting may be necessary even if a SAW bandpass filter is used.
Fig. 2(d) is an oscillogram of the amplitude and phase characteris-
tics of the interferometer. The phase is very linear, running from
+90° to —90° between each null.

In summary, the SAW interferometer described is capable of
50-dB nulls of 150-kHz periodicity over frequency bands limited
by the SAW transducers used. The limiting amplifier provides the
dual benefit of ultraflat frequency response using standard
[(sin 2) /2P transducers and enough gain to compensate for delay
line losses. Because the nulls are extremely narrow and deep, most
of the UHF band involved remains available for use in communica~
tions systems. When a satellite navigation system receiving station
is unavoidably in the presence of the g-p transmission field, its
highly sensitive receiver can easily be blocked so that it would be
insensitive to the low level CW (with Doppler shift) received from a
distant satellite. Xach allocated 150-kHz-spaced g-p signal with
its narrowly spaced sidebands falls well within a deep rejection
notch. The frequencies of the satellite CW signals happen to fall
sufficiently outside these notches to be received at an acceptable
useful level.
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An Accurate Formula for the Gamma Function

L. LEWIN

Abstract—The residue calculus method of investigation of certain
waveguide configurations makes use of the asymptotic properties
of the gamma function. Usually the range of the variables concerned
is such that this approximation is quite adequate. In a recent in-
vestigafion of a very narrow waveguide junction peculiar numerical
effects were traced to a condition where the variables were much too
small to warrant the use of the usual asymptotic formula. A new and
very simple modification extends the asymptotic form right down to
zero with an error of, at most, only a few percent.
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In the course of a recent investigation by the residue-calculus
method of a waveguide junction with a very large dimensional ratio,
it was noticed that the numerical values of some of the coefficients
in the calculation were behaving quite differently from what was
expected. The matter was eventually traced to an inappropriate
use of the asymptotic formula for the I' function. This 1s usually

given in the form, valid for large =z,
L M
12z 3602° '

(x — 3)logz —z + $log (2m)
In the example the values of # to be used included some close to
zero, and although the correction series in 1/z in (1) is not usually
utilized in these formulas it is clear that, even in truncated form,
(1) is useless so close to the origin. The departure from the antici-
pated values is therefore to be expected.

In the course of working out these features an amended formula
for the T' function was found. Although it only involves a simple
derivation from (1), it appears to be new, and is offered here in
case it has a wider use than the particular problem that gave rise
to it. It comes from incorporating the 1/12x term with 1/2logx
(somewhat after the manner of Padé approximations), and can be
written

logT'(z) =

logT(z) =

(x—1)]logz — 2 + $log 2x) + 1log (x + %)
+E(@). (2)

Here, E(x) is a correction term which is quite small for all positive
values of z, and can usually be neglected. For large = it is closely
approximated by (12z 4+ 46/15)72% but even for values right down
to 2 = 0 it remains sufficiently small to enable the dominant terms
in (2) to represent I'(z) to within about 2 percent. A graph of
E(z) from = 0 to 2.5 is shown in Fig. 1.




